Dengue Vector Mosquitoes at a Tourist Attraction, Ko Samui, in 1995

Usavadee Thavara¹, Apiwat Tawatsin¹, Prakong Phan-Urai¹,
Wichai Kong-ngamsuk¹, Chitti Chansang¹, Liu Mingtuan² and Li Zhijun²

¹ Division of Medical Entomology, Department of Medical Sciences, Ministry of Public Health.
² Guangxi Health and Anti-Epidemic Center, Nanning, Guangxi, P.R.China.

Abstract

On Ko Samui, Thailand there were two epidemics of dengue hemorrhagic fever (DHF) in 1966 and 1967, followed by endemics up to 1994. Aedes aegypti and Aedes albopictus were the vectors. From January to July 1995, 51 cases of DHF were reported, out of these were many foreigners who still suffer from dengue fever and return home with negative impression. We carried out an entomological survey around the island and collected the mosquitoes to detect dengue virus by digoxigenin-cDNA probe. The data revealed that Aedes aegypti and Aedes albopictus still were abundant and some were infected with dengue virus. Visual larval survey indices (HI, CI and BI) were 90.4, 61.3 and 301.3 respectively. Biting rate (BR) of Aedes mosquitoes was high, the average indoor and outdoor BR were 9.7 and 100.8 mosquitoes/man-hour. From 13 pools of mosquitoes, 8 strains of dengue virus were detected (61.5%). The results may encourage the local authorities to improve vector surveillance and control before the famous island becomes an unpleasant island.

Keywords
Dengue, vector, mosquitoes, Ko Samui, Ae. aegypti, Ae. albopictus

Introduction

Dengue hemorrhagic fever (DHF) has been recognized as a serious disease in Thailand since 1958. It is caused by dengue virus, which has four serotypes and is transmitted by Aedes aegypti (Scanlon 1965). On Ko Samui there were epidemics of DHF in 1966 and 1967; Aedes aegypti and Aedes albopictus were found to be abundant and responsible for transmission of dengue virus (Gould et al. 1968; Russell et al. 1968; 1969). Then, there have been endemics up to 1994. Although there are two species of vectors in Ko Samui (Gould et al. 1970), vector surveillance and control are rather poor. From January to July
1995 there were 51 cases of DHF on the island, including foreign tourists. This report presents data from an entomological survey and determination of dengue virus in collected mosquitoes from Ko Samui in 1995, with a view to providing a basis for improvement of vector control.

Materials and methods

Study sites

Ko Samui is the biggest of a group of several dozen islands in the southern Gulf of Thailand and a part of Surat Thani Province. It is about 19 km long and 16 km wide, with an area of about 304 km² and a population of about 32,000. Many regard it as the biggest “coconut island” in the world. The climate of Ko Samui is dominated by the tropical monsoons. Climatologic features (precipitation, humidity and temperature) recorded at Ko Samui weather station from July 1994 to June 1995 are shown in Figure 1. In July 1995, larval and adult *Aedes* surveys were performed in the 6 villages of Ang Thong, Ma Ret and Na Muang subdistricts (Figure 2).

![Figure 1. Climatologic features of Ko Samui (July 1994-June 1995).](image)
Mosquito collection methods

The indices of population density of *Aedes* mosquitoes were determined by visual larval survey technique and the collection of adult mosquitoes by human-bait collection according to WHO methods in patients’ houses and neighborhoods, as well as other suspected infected areas both indoors and outdoors on the island. The collected mosquitoes were counted for landing and biting rates and identified with respect to species, then reared ~24 hours until their stomachs were empty, pooled by collection site, kept in liquid nitrogen and brought back to the laboratory for determination of viruses.

Detection of dengue virus

Dengue RNA was extracted from collected mosquitoes by phenol/chloroform technique, then hybridized with digoxigenin labeled cDNA probe (Dig-cDNA probe) developed by Guangxi Health and Anti-Epidemic Center, China (Liu et al. 1992). Dig-cDNA probe, 190 base-pairs long is specific for the 4 serotypes of dengue virus. Sensitivity and specificity of this probe are ~
90% and 70% respectively (Liu, unpublished). The details of this method will be presented in a separate paper.

Results

A total of 285 mosquitoes from 6 locations of 3 subdistricts on Ko Samui were identified: 132 *Aedes aegypti*, 140 *Aedes albopictus* and 13 *Armigeres subalbatus*. The biting rate of *Aedes albopictus* outside the houses was 7.2-194.4 mosquitoes/man-hour. Biting rates of both species of *Aedes* inside the houses was 5.8-15.5 mosquitoes/man-hour (Table 1). We could collect both species inside the houses; however, most were *Aedes aegypti*, whereas outside were only *Aedes albopictus*. The data from our surveys confirmed that *Aedes aegypti* was endophilic and *Aedes albopictus* was exophilic. Results from visual larval survey showed that there was high density of *Aedes* mosquito larvae with 85.7-93.8% house index (HI) 54.4-72.2% container index (CI) and 227-419 Breteau index (BI) (Table 2). From 13 pools of mosquitoes, 8 strains of dengue virus were detected by Dig-cDNA probe (Table 3).

Table 1. Biting and landing rate of Aedes mosquitoes from human-bait collections on Ko Samui, July 1995.

<table>
<thead>
<tr>
<th>Location</th>
<th>BR<sup>a</sup> (mosquito/man-hr)</th>
<th>LR<sup>b</sup> (mosquito/man-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indoor, Outdoor</td>
<td>Indoor, Outdoor</td>
</tr>
<tr>
<td>Ang Thong</td>
<td>7.7, ND</td>
<td>10.9, ND</td>
</tr>
<tr>
<td>Ma Ret</td>
<td>5.8, 7.2<sup>c</sup></td>
<td>8.4, 8.5</td>
</tr>
<tr>
<td>Na Muang</td>
<td>15.5, 194.4<sup>d</sup></td>
<td>17.7, 194.4</td>
</tr>
<tr>
<td>Average</td>
<td>9.7, 100.8</td>
<td>12.3, 101.5</td>
</tr>
</tbody>
</table>

ND : Not done, because of rain.

^a : Biting rate = The number of female *Aedes* mosquitoes.

^b : Landing rate = The total number of *Aedes* mosquitoes.

^c : Coconut plantations, 150 meters far from houses.

^d : A fruit orchard, 150 meters far from houses.
Table 2. *Aedes* larva index from visual larval survey on Ko Samui, July 1995.

<table>
<thead>
<tr>
<th>Location</th>
<th>HI<sup>e</sup></th>
<th>CI<sup>f</sup></th>
<th>BI<sup>g</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ang Thong</td>
<td>85.7</td>
<td>72.7</td>
<td>227</td>
</tr>
<tr>
<td>Ma Ret</td>
<td>91.7</td>
<td>54.4</td>
<td>258</td>
</tr>
<tr>
<td>Na Muang</td>
<td>93.8</td>
<td>56.8</td>
<td>419</td>
</tr>
<tr>
<td>Average</td>
<td>90.4</td>
<td>61.3</td>
<td>301.3</td>
</tr>
</tbody>
</table>

^e: House Index = The number of house positive for *Aedes* per 100 houses.

^f: Container Index = The number of container positive for *Aedes* per 100 container.

^g: Breteau Index = The number of container positive for *Aedes* per 100 houses.

Table 3. Detection of dengue virus by Dig-cDNA probe.

<table>
<thead>
<tr>
<th>Species</th>
<th>No. of tested pools</th>
<th>No. of positive pools</th>
<th>% positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae. aegypti (female)</td>
<td>6</td>
<td>5</td>
<td>83.3</td>
</tr>
<tr>
<td>Ae. aegypti (male)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ae. albopictus</td>
<td>5</td>
<td>3</td>
<td>60.0</td>
</tr>
<tr>
<td>Armigeres spp</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>8</td>
<td>61.5</td>
</tr>
</tbody>
</table>

Discussion

There was a high density of *Aedes aegypti* and *Aedes albopictus* on Ko Samui according to WHO Density Figure (Anonymous 1972) and some were infected with dengue virus. Differences in the preferred habitats and behavior of these two species led to more frequent vector contact with man and made the island a risk area to dengue fever than the other areas with only *Aedes aegypti*. We were able to detect the dengue virus in both species of *Aedes* and to confirm that both are implicated in the transmission of dengue viruses on Ko Samui as in the epidemic of 1966-1976 (Gould et al. 1968; 1970). Thus, dengue fever is a threat to the local people and to visitors, for the island is an international tourist attraction. Using rapid detection methods to monitor the dengue virus in vector mosquitoes is important for surveillance and control of dengue epidemics since they provide tools for assessment of infection rate and hence for epidemic forecasting.

In our surveys we found that the biting behavior of *Aedes* mosquitoes was different from those in the other places. Usually the biting peaks of *Aedes aegypti* in the rainy season are at 0900-1100 hour and 1300-1700 hour (Yasuno and Tonn 1970), but the biting peak of these mosquitoes on Ko Samui appeared
to be different and the outdoor biting rate of *Aedes* spp (100.8) was higher than the indoor biting rate (9.7), and different from the results of the survey by Gould et al. (1968). Therefore, it is worthwhile to undertake further ecological studies there. The major controlling measure of dengue fever is reducing the density of vector mosquitoes if possible eliminating them. It is suggested that efficient control methods should be applied on Ko Samui, because the average BI on Ko Samui was 301 and the result of Chansang et al. (1993) revealed that areas with average BI of over 100 are at risk for dengue infection (Chansang et al. 1993).

Acknowledgements

The authors are grateful to Prof Wang Shusheng, Prof Wu Neng from Guangxi Health and Anti Epidemic Center, China for assistance in detection of dengue virus in mosquitoes by Dig-cDNA probe, to Dr.Jumroon Mikhanorn and Dr.ML Ratanasuda Phan-Urai for their kind advice and supporting the joint project, to Dr.Krongthong Thimasarn, Miss Jotika Boon-long and Mr.Nat Malainual who kindly commented on this paper. Thanks are also due to Miss Norm Nalakhorn for providing facilities on Ko Samui during this survey.

References

